innovative. individual. independent.
Software Innovations GmbH

eXtended Compiler for REXX (XCR)

Installation and User’s Guide
Version 3.4.0

June 2016

improvIT Software Innovations GmbH

GroRe Elbstralle 141 a

22767 Hamburg

Telephone: +49 (0)40 540 90 29 - 7

Fax: +49 (0)40 540 90 29 - 9

Email: Contact@improvIT-Software-Innovations.de
Web: www.improvIT-Software-Innovations.de

eXtended Compiler for REXX (XCR)

This page intentionally left blank

Installation and User's Guide

eXtended Compiler for REXX (XCR)

. Content
R O 01 = o | PO 1
R I £ 1 T £ 2
TR 1= o [R 3
Lo INTOAUCTION .. 4
1.1, REXX COMPIIEIS. ...ttt 4
1.2. eXtended Compiler for REXXccooiiiiiiiiiii e 4
1.2.1. FUIl ISPF SUPPOITuuiiiiiiiiiiiiiiiiiiiietiieiiii e 5
2. Compiler INSLallAtioNooeeiiiiiii e e 6
2.1, SOftWare PrerEqUISITESuuuuuiiiiiiiiiiiiiiiiiiiii e 6
P S (010111 = I T = TS Y N 6
2.3, DALASELS ... e e 6
2 S W o= o Tod ST (VS 7
T 11 1] o IS £= 1 (=T o TN 8
I 200 I [T [0 T [To T @ To [8
3.2, COPYIIGNT .. 8
3.3, XCR System Variablesccoiiiiiiiiiiii e 8
3.4, COMPIIE JOD....ei e 9
o I (=T o I R 0 1 o 1 L= T 9
3.4.2. SEEP 2 - LINK oo 11
S T O] o 7o [T = [0 £ 11
4. Compiled ISPF Edit MACIOS........uuuuiiiiiiiiiiiiiiiiiiiiiiiiieii e 12
4.1. Compiling ISPF Edit MACIOS.........cuuiiiie et 12
4.2, USING ISPF Edit MACIOSccooiiiieeeeeeeeeeeeeee e 13
5. Running Compiled REXX MOAUIESovuiiiiiiieiieeecie e 14
5.1, BatCh EXECULION.....cciiiiieiiiiiie et e e e et e e e e e e e e e eeennnnnas 14
5.1.1. RetUMN COUES ... 15
6. CAllable AP e e e e e e e aaaaaana 16
6.1. Calling CONVENTIONS.....coiiiiiiieiee e e e e e e e e e e eeees 16
6.2. APIRELUIMN COUES.....coieeieiiiieie e ettt a e e e e e e e e e e e e e e e e e e eeeeannnnnas 17
7. TSO Dynamic STEPLIB fEAUIEieiiiiiee et 18
7.1. Installing eXtended Common Services (XCS)uuuuuuummmmmmmmmmmmmiiiiiiiiiiiiniinnnnnns 18
7.2. Using the TSO Dynamic STEPLIB featureccooovvviiiiiiiiiiiecceiec e 19
8. Release INfOrMALION..........ooiiiiiiiie e e e e e e e e aaaan s 22
8.1, ChangeS iN 3.4.0 ..oouuiiiiiiii e 22
LS TR o] o =T ox S UPPURTSPPIN 23

©improvIT Consulting GmbH

eXtended Compiler for REXX (XCR)

ll. Listings

Listing 1: JCL sample eXtract JODccooiiiiiieeeeeeeeee 6
LiStiNg 2: JCL COMPIIE ...ttt e e e e e e e et e e e e e e e e e e e eaaa e e eaeeeeenenees 9
LiStiNg 3: JCL LINK ..o 11
Listing 4: Sample "ISPFIMAC!o e e e e e e e et e e e e e eeeaane 13

2 Installation and User's Guide

eXtended Compiler for REXX (XCR)

lll.Tables

Table 1: Datasets fOr COMPIIEuuu it 10
Table 2: Return codes from COMPIIEooovviiiiiiii e 10
Table 3: Dataset changes for lINK StePu i uuuuiiiiiiiiiiiiiii e 11
IR0 L= L (1 € o0 Lo = 15
Table 5: XCR API Calling CONVENLIONS.........uuuuiiiiieeiiiiieiiiiiie et 16
Table 6: APl SAMPIES ... e 17
Table 7: API REEUIMN COUESooveiiiiiiiee ettt e e e e e e e e e e e e e 17
Table 8: Dynamic STEPLIB return and reason COUES.........ccoviiviiriiiiiiiiiiieeeeeeeeeie e 21

©improvIT Consulting GmbH 3

eXtended Compiler for REXX (XCR)

1. Introduction

REXX has evolved into the preferred programming language on IBM z/OS systems. It is
the standard programming language for system programmers alongside assembler. It is
also ideal for application programmers who require a powerful tool to reduce the time
required for carrying out repetitive tasks in a TSO/ISPF development environment.

REXX does, however, have some disadvantages. This, for example, includes being a
purely interpreted language. REXX can easily be copied and changed resulting in a lack of
investment protection and security.

1.1. REXX Compilers

There are several products on the market that allow REXX procedures to be compiled
under IBM z/OS systems. In most cases a real compile (i.e. a full conversion to machine
code) is not performed. Instead the REXX procedure is “pre-processed” and encapsulated
into a load module.

The compiled REXX procedures can then be directly called from all environments (e.qg.
TSO, JCL, other programs).

The eXtended Compiler for REXX (XCR) offers an effective and easy way to convert your
REXX procedures into load modules.

1.2. eXtended Compiler for REXX

XCR was developed to generate load modules from REXX procedures. The compiler
offers various technical features which are not available in the interpreter and in other
similar products:

— The source code is encrypted (investment protection)

— Code can be copied from other libraries using the INCLUDE statement (simplified
development)

— A Copyright message can be added to the load modules
— The load modules do not require a runtime library

— Unnecessary blanks and comments are removed from the source module during the
compile (improved runtime performance)

— Does not require any runtime related information during the compile (no stubs)
— The modules can be called directly without using batch TSO

— The API may be used to call compiled REXX modules from other programming
languages (e.g. Assembler, Cobol, C). All results are returned to the caller.

— System-Variables containing compile date/time information can be used.

These features can reduce maintenance costs and simplify development. System
availability can also benefit.

4 Installation and User's Guide

eXtended Compiler for REXX (XCR)

1.2.1. Full ISPF Support

XCR also offers a unique feature which is not available using other compilers. IBM
Interactive System Productivity Facility (ISPF) edit macros may be also compiled and
executed.

Internally ISPF can only call edit macros written in REXX or as CLISTS and program
macros written in a high level language (e.g. Assembler, Cobol, PL/1, C).

XCR allows compiled REXX edit macros to be directly called when using the ISPF editor.
All advantages of the XCR compiler can therefore be applied to ISPF edit macros.

©improvIT Consulting GmbH

eXtended Compiler for REXX (XCR)

2. Compiler Installation

2.1. Software Prerequisites

The following IBM software is required:
- z/0S
All releases are supported.

The improvIT Software Innovations software “eXtended Common Services (XCS)” is
only needed if you want to use the "TSO Dynamic STEPLIB" feature (see chapter 7 for
details).

2.2. Runtime Datasets

It is recommended, that the XCR load libray is defined in the Linklist concatenation.
Alternatively the load libraries may be added to a Steplib concatenation.

No system modifications are required.

2.3. Datasets

XCR consists of one loadlib (SXCRLOAD) and one samplib (SXCRSAMP). The files are
delivered in TSO transmit format.

To install XCR, just transfer the xmit files in binary mode to your host system (e.g. using
FTP). The files must be extracted by using the TSO receive command. The target dataset
names can be specified at this point.

The following JCL shows a sample extract Job:

//JOBCARD JOB (ACCT), 'PROG',
// CLASS=?,MSGCLASS="?,
// NOTIFY=&SYSUID

//***/

//* EXTRACT XCR FROM XMIT FILES */
//***/
//81 EXEC PGM=IKJEFTO01, DYNAMNBR=30
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
PROFILE NOPREFIX
RECEIVE INDSN('???.XCR340.XMIT (SXCRLOAD) ")
DSNAME ('?7??.XCR340.SXCRLOAD")

RECEIVE INDSN('???.XCR340.XMIT (SXCRSAMP) ')
DSNAME ('???.XCR340.SXCRSAMP')
/*

Listing 1: JCL sample extract job

6 Installation and User's Guide

eXtended Compiler for REXX (XCR)

2.4. Licence Key

To use the XCR compiler you will need a licence key. This key is supplied by improvIT
Software Innovations.

The key needs to be installed using the samplib member "ACTLIKEY". The sample
AMASPZAP job updates the licence information in the XCR loadlib.

There are 3 different licence types:

1. Base: A maximum of 100 executable REXX statements are allowed
2. Developer: A maximum of 250 executable REXX statements are allowed
3. Full licence: No limitations

Please contact improvIT Software Innovations for further details.

©improvIT Consulting GmbH 7

eXtended Compiler for REXX (XCR)

3. Getting started

3.1. Including Code

The INCLUDE statement is a feature that enables you to copy REXX source statements
into your procedure from other libraries. Define the libraries to be searched by adding one
or more datasets to the SYSLIB DDName in the compile step. The SYSLIB DDName is
optional or may be allocated as Dummy. If used the libraries must be partitioned with a
logical record length of 80.

In the REXX procedure the INCLUDE statement must be coded exactly as follows:
“I*%INCLUDE member*/”. Only the member name may be changed. No spaces may be
added.

Note: Nested %INCLUDE statements are not resolved.

3.2. Copyright

The COPYRIGHT statement enables you to place a legible text notice into your load
modules.

In the REXX procedure the COPYRIGHT statement must be coded exactly as follows:
“I*%COPYRIGHT user text*/”.

The end of the coded statement should not exceed byte 70 of the record. Otherwise XCR
will treat the statement as a normal comment and it will not be legible in the load module.

Note: Only the first three %COPYRIGHT statement are processed. All others are
treated as normal Rexx comments.

3.3. XCR System Variables

Three XCR system variables may be used anywhere within the Rexx code (also in
%Copyright statements and %lnclude code). These are resolved by XCR during the
compile. The variables with their returned values are as follows:

%XCRDATE - dd.mm.yy
%XCRTIME - hh:mm:ss
%XCRYEAR - yyyy

Values are always left justified and padded with spaces to a length of 8 bytes.
Example: "Say Compile Date is %XCRDATE".

8 Installation and User's Guide

eXtended Compiler for REXX (XCR)

3.4. Compile Job

REXX procedures are compiled through a simple batch job. A sample job “REXXCOMP”
can be found in the samplib dataset. It is recommended, that the required JCL is made
available to all users in form of a JCL procedure.

The compile job consists of 2 steps:
— S1COMP - Converts the REXX procedure into a source deck

— S2LINK - Links the source deck and generates the load module

3.4.1. Step 1-Compile

The following JCL shows the compile step:

//**

//* COMPILE THE REXX *
//**
//S1COMP EXEC PGM=XCRLRLMG [, PARM='<REXXNAME>']

//STEPLIB DD DISP=SHR, DSN= <SXCRLOAD>

//* REXX SRC:

//SYSIN DD DISP=SHR,DSN= <YOUR.REXX.LIB> (<REXXNAME>)

//* OPTIONAL FOR INCLUDE STATEMENTS;

//SYSLIB DD DISP=SHR,DSN= <YOUR.INCLUDE.LIB>

//*

//XCRDSRC DD SYSOUT=*

//XCRDRUN DD SYSOUT=*

//XCRDOBJ DD DSN=g&&REXXOBJ,

// DISP=(, PASS),UNIT=VIO, SPACE=(CYL, (1,1)),
// BLKSIZE=3200

//XCRDLNK DD DSN=&&REXXLNK,

// DISP=(, PASS),UNIT=VIO, SPACE=(CYL, (1,1)),

// BLKSIZE=3200

//XCRDWRK DD UNIT=SYSDA, SPACE=(CYL, (5,5)),BLKSIZE=3200
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=%*
//SYSUDUMP DD SYSOUT=*

Listing 2: JCL Compile

The optional PARM value <rexxname> determines the name of the REXX CSECT in the
load module. Generally it should not be specified. But it is required if SYSIN is not a
member of a PO dataset. The STEPLIB is only required if the runtime libraries are not in
the Linklist.

©improvIT Consulting GmbH 9

eXtended Compiler for REXX (XCR)

The following dataset changes need to be made in Step 1:

SYSIN LRECL=80 Library containing input REXX source
SYSLIB LRECL=80 Library containing code as required by INCLUDE
statements

XCRDSRC | LRECL=90 Listing of the input REXX after resolving any
INCLUDE statements

XCRDRUN | LRECL=90 Listing of the compressed input REXX

SYSPRINT | Sysout Contains compile statistics

Table 1: Datasets for compile

The following values are returned by the compiler:

0 Compile completed successfully

4 Licence expires in less than 30 days or Code was modified by Compiler

8 Licence expired less than 14 days ago

12 Invalid parameter, processing error or CSECT name could not be
Sgé%r)mined (source was not in PO dataset or optional call PARM not

Maximum lines of code for licence type (BASE = 100 or DEVELOPER =
250) exceeded.

16 No real statements in the source REXX (only comments)

36 Licence missing or invalid

Table 2: Return codes from compile

10 Installation and User's Guide

eXtended Compiler for REXX (XCR)

3.4.2. Step 2 -Link

The following JCL shows the link step:

//**

//* LINK THE OBJ FILE *
//**
//S2LINK EXEC PGM=IEWL,

// PARM='LIST, XREF,MAP, RENT, REUS, AMODE=31, RMODE=ANY "'
//SYSPRINT DD SYSOQUT=*

//SYSUT1 DD DSN=&SYSUT1,SPACE=(1024, (120,120),,,ROUND),UNIT=SYSDA,
// DCB=BUFNO=1

//SYSLIB DD DISP=SHR, DSN= <SXCRLOAD>

//SYSLIN DD DSN=&&REXXOBJ, DISP=(OLD, DELETE)

// DD DSN=&&REXXLNK, DISP=(OLD, DELETE)

//SYSLMOD DD DISP=SHR,DSN= <YOUR.REXX.LOADLIB>

Listing 3: JCL Link

The following dataset changes need to be made in Step 2:

SYSLIB Must contain the name of the XCR load library

SYSLMOD The name of the target load library

Table 3: Dataset changes for link step

3.5. Considerations

The following points must be observed when using the XCR compiler:

— If an EXIT or RETURN statement is coded without a return value, then the compiler will
automatically append a zero to the corresponding statement. The compile will
terminate with a return code of 4 if changes were made to EXIT or RETURN

statements

— REXX functions may not return data greater than 32K in length (using the Return or

Exit statements). otherwise a REXX error 40 will occur.

©improvIT Consulting GmbH

11

eXtended Compiler for REXX (XCR)

4. Compiled ISPF Edit macros

4.1. Compiling ISPF Edit Macros

All IBM ISPF Edit Macros can be compiled into load modules using the eXtended Compiler
for REXX. XCR automatically recognizes when a macro is being compiled and performs
the required changes.

Due to ISPF system restrictions, XCR internally removes the initial "ISREDIT MACRO"
instruction in the edit macro and replaces it with a corresponding "Parse ARG" statement
in the load module.

XCR requires that at least the following code is located somewhere in the edit macro in
order for recognition to take place:

"ISREDIT MACROQO" or 'ISREDIT MACRO' or ISREDIT MACRO

Optional parameters as well as the PROCESS and NOPROCESS options are handled
automatically.

Note: If a compiled edit macro is called directly from environment other than the
IBM ISPF Editor (e.g. TSO), then the macro will terminate prior to execution!

12 Installation and User's Guide

eXtended Compiler for REXX (XCR)

4.2. Using ISPF Edit Macros

It is not possible to directly call compiled ISPF edit macros from the editor. This is due to
ISPF restrictions. It is necessary to first define all compiled edit macros within the ISPF
edit session. This needs to be performed every time the ISPF editor is used. The easiest
method to execute the definitions every time the editor is started is to use the ISPF system
wide editor initialisation macro (as defined in the ISPF system options). The options can be
customised using the IBM ISPF configuration tool ISPCCONF.

The sample "ISPFIMAC" is located in the XRS samplib. Copy the necessary code to your
default ISPF system wide editor initialisation macro.

/* REXX **/
/* */
/* This sample edit macro demonstrates how compiled edit macros may */
/* called from the ISPF editor. This code should generally be added */
/* to the system wide ISPF initial edit macro. */
/* */

/***/

/* Setup environment */
Address ISREDIT
"MACRO NOPROCESS"

/* Define the XCR edit macro to ISPF */
"DEFINE <MACRO-NAME> MACRO PROGRAM"

Return 0

Listing 4: Sample "ISPFIMAC"

These ISPF Define statements are required in order that the IBM ISPF editor can
process compiled edit macros (also known as ‘program macros’). One DEFINE
statement must be added per program macro.

©improvIT Consulting GmbH 13

eXtended Compiler for REXX (XCR)

5. Running Compiled REXX modules

Generally no modifications are required when running compiled REXX modules.

However, different values might be returned, if you are using the "parse source” command
to establish the current runtime environment.

The DDName "SYSTSPRT" must always be allocated if you are running compiled REXX
modules. If functions such as interactive tracing are being used, then the DDName
"SYSTSIN" must also be allocated. These DDNames are always available when running
under online TSO.

If you are using ISPF dialog functions or accessing ISPF variables, then the initial REXX
module must be started using the "LANG(CREX)" subparameter of the "SELECT"
command.

5.1. Batch Execution

Compiled REXX modules can be run in batch using:
TSO IKJEFT1A/01 or
XCR service routine XCRLSJCL

If you wish to execute compiled REXX modules directly (i.e. with "EXEC PGM=") and not
via TSO, then use the XCR service routine XCRLSJCL. This routine also allows REXX
modules to return non-numeric data without resulting in "uncontrollable” return codes.

The name of the compiled REXX to be executed and any parameters are passed to
XCRLSJCL. After processing, the first 120 bytes of data returned by the compiled REXX
are written to the job log.

The DDName "SYSTSPRT" must be allocated. All output is written to this DDName.

14 Installation and User's Guide

eXtended Compiler for REXX (XCR)

5.1.1. Return Codes

Return | Description

code

0 Processing successful

16 An invalid REXX module name was specified

20 No Parameters were supplied

24 More than 120 bytes of data were returned by the REXX module
36 The requested REXX module could not be found

?? Runtime return codes from REXX processing

Table 4: Return codes

©improvIT Consulting GmbH 15

eXtended Compiler for REXX (XCR)

6. Callable API

The XCR API offers a unique feature. By using the API, it is possible to call compiled
REXX modules from any programming language adhering to the standard IBM Linkage
Conventions. The API allows values to be passed to the REXX and returns the results
after processing. Results can be any value and not just a numeric return code.

6.1. Calling Conventions

The structure of the API parameters is as follows:

REXX Character 8 bytes | Must contain the name of the compiled REXX
Module which needs to be executed

Input Fullword Binary (4 = The length of the parameter area which needs to
Length bytes) be passed to the compiled REXX

Input Area | Character with a This field contains the string to be passed to the
length matching compiled REXX
the value of "Input

Length”
Output Fullword Binary (4 Input: The length of the parameter area in which
Length bytes) the results of the compiled REXX are to be
returned.
Output: The length of the data returned by the
compiled REXX module.
Output Character with a This field contains the result string returned by
Area length matching the compiled REXX
the value of

"Output Length"
Table 5: XCR API Calling Conventions

The Module "XCRLSPGM" must be called using the above parameters. Register 1 must
point to a list of addresses which in turn point to the data areas (IBM Linkage
Conventions).

Three supplied samples demonstrate the use of the API:

16 Installation and User's Guide

eXtended Compiler for REXX (XCR)

Sample Description
ASM2XCR | Using Assembler

COB2XCR | Using Cobol

C2XCR Using C

Table 6: APl Samples

The DDName "SYSTSPRT" must be allocated. All output is written to this DDName.

6.2. APl Return Codes

The following return code values are possible:

Return Description
code

0 Processing successful

24 The supplied "output area” was not large enough to store all of the
returned data. The required length can be found in field "output length"
after processing

36 The requested REXX module could not be found

?7? Runtime return codes from REXX processing

Table 7: APl Return Codes

©improvIT Consulting GmbH

eXtended Compiler for REXX (XCR)

7. TSO Dynamic STEPLIB feature

To support testing of the compiled REXX programs the "TSO Dynamic STEPLIB" feature
is included in this release.

It allows you to test a new version of a load module in the TSO STEPLIB without a TSO
LOGOFF/LOGON.

You must install the improvIT Software Innovations base product XCS (eXtended
Common Services version 2.8.0 or higher) if you want to use this feature.

7.1. Installing eXtended Common Services (XCS)

XCS consists of two loadlib (SXCSLOAD and SXCSAPF). The files are delivered in TSO
transmit format.

To install XCS, just transfer the xmit files in binary mode to your host system (e.g. using
FTP). The files must be extracted by using the TSO receive command. The target dataset
names can be specified at this point.

It is recommended to add both load libraries to the LNKLST.

The SXCSAPF dataset must be APF authorized. Furthermore you must add the entry
point name XCSADSTP to the AUTHTSF section in your IKJITSOxx PARMLIB member.

18 Installation and User's Guide

eXtended Compiler for REXX (XCR)

7.2. Using the TSO Dynamic STEPLIB feature

This feature is supplied as a REXX function. It may be called from any REXX exec.
The syntax is as follows:

XRC = XCSXDSTP(function, stemname, datasetname)

The parameters are:

1. Function: One of the following functions must be specified

ADDF Adds the dataset as first dataset in the
current STEPLIB concatenation

ADDL Adds the dataset as last dataset in the
current STEPLIB concatenation

ALLOC Allocates a new STEPLIB
FREE Frees the current STEPLIB
LIST Lists the current STEPLIB datasets

REMOVE Removes the dataset from the current STEPLIB

2. Stemname: The name of a stem in which the STEPLIB dataset names are
returned (must end with a dot and must not exceed 8 characters)

3. Datasetname: The name of a dataset to be added to / removed from the current
STEPLIB (mandatory for functions ADDx, ALLOC, REMOVE)

The results are returned in stem variables:
<STEM>.0 Number of dataset entries (new STEPLIB)
<STEM>.1 New STEPLIB DDNAME (#TEPO0001, #TEP0002,...)
<STEM>.2 First dataset of new STEPLIB

<STEM>.n Last dataset of new STEPLIB

A new STEPLIB is always allocated with a new DDNAME: the next available name
#TEPnnnn will be used.

©improvIT Consulting GmbH 19

eXtended Compiler for REXX (XCR)

Examples:
XRC = XCSXDSTP('LIST', 'DSTP.") lists the current STEPLIB

XRC = XCSXDSTP('FREE', 'DSTP.") frees the current STEPLIB

XRC = XCSXDSTP('ALLOC, 'DSTP.', 'USER.LOADLIB') allocates a new STEPLIB

The return value XRC of this function is a one byte value containing '1' (function
successful) or '0" (function unsuccessful).

Two further variables are also created:

XCSXDSTP.FC and XCSXDSTP.FRN contain the function return code and the function
reason code.

20 Installation and User's Guide

eXtended Compiler for REXX (XCR)

The following table contains a list of possible situations and the corresponding results:

Processing successful 1 0000 0000
No arguments found 0 0012 0001
Zero length (argument 1) 0 0012 0002
Zero length (argument 2) 0 0012 0003
Zero length (argument 3) 0 0012 0004
Wrong length (argument 1) 0 0012 0006
Wrong length (argument 2) 0 0012 0007
Wrong length (argument 3) 0 0012 0008
Argument missing 0 0012 0010
Too much arguments (general) 0 0012 0011
Too much arguments (FREE/LIST) 0 0012 0012
Invalid argument 1 0 0012 0013
Invalid argument 2 0 0012 0014
The dataset does not exist 0 0012 0015
Licence module not found 0 0012 0020
Error in licence string 0 0012 0023
Licence has expired 0 0012 0025
Dynalloc (SVC 99) error 0 > 256 SVC 99
error code
Function not APF authorized 0 1044 0056

Table 8: Dynamic STEPLIB return and reason codes

Note: The XCR licence module XCR$$LIC must be accessible when calling the
REXX function XCSXDSTP !

©improvIT Consulting GmbH 21

eXtended Compiler for REXX (XCR)

8. Release Information

8.1. Changes in 3.4.0

"TSO Dynamic STEPLIB" support (see chapter 7 for details)

— The improvIT Software Innovations software “eXtended Common Services (XCS)” is
only needed if you want to use the "TSO Dynamic STEPLIB" feature

22 Installation and User's Guide

eXtended Compiler for REXX (XCR)

9. Contact

For further information regarding the eXtended Compiler for Rexx (XCR) please contact:

improvIT Software Innovations GmbH
Grolie ElbstraRe 141 a

D-22767 Hamburg

Germany

Telephone: +49 (0)40 5409029 -7

Fax: +49 (0)40 5409029 -9
Email: Contact@improvIT-Software-Innovations.de
Web: www.improvIT-Software-Innovations.de

©improvIT Consulting GmbH

23

mailto:info@improvIT-Software-Innovations.de
http://www.improvit-software-innovations.de/

	1. Introduction
	1.1. REXX Compilers
	1.2. eXtended Compiler for REXX
	1.2.1. Full ISPF Support

	2. Compiler Installation
	2.1. Software Prerequisites
	2.2. Runtime Datasets
	2.3. Datasets
	2.4. Licence Key

	3. Getting started
	3.1. Including Code
	3.2. Copyright
	3.3. XCR System Variables
	3.4. Compile Job
	3.4.1. Step 1 - Compile
	3.4.2. Step 2 - Link

	3.5. Considerations

	4. Compiled ISPF Edit macros
	4.1. Compiling ISPF Edit Macros
	4.2. Using ISPF Edit Macros

	5. Running Compiled REXX modules
	5.1. Batch Execution
	5.1.1. Return Codes

	6. Callable API
	6.1. Calling Conventions
	6.2. API Return Codes

	7. TSO Dynamic STEPLIB feature
	7.1. Installing eXtended Common Services (XCS)
	7.2. Using the TSO Dynamic STEPLIB feature

	8. Release Information
	8.1. Changes in 3.4.0

	9. Contact

